High LRRK2 Levels Fail to Induce or Exacerbate Neuronal Alpha-Synucleinopathy in Mouse Brain

نویسندگان

  • Martin C. Herzig
  • Michael Bidinosti
  • Tatjana Schweizer
  • Thomas Hafner
  • Christine Stemmelen
  • Andreas Weiss
  • Simone Danner
  • Nella Vidotto
  • Daniela Stauffer
  • Carmen Barske
  • Franziska Mayer
  • Peter Schmid
  • Giorgio Rovelli
  • P. Herman van der Putten
  • Derya R. Shimshek
چکیده

The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson's disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P166: The Role of Interlukin-6 of Immune Cells in Neuronal Dysfunctions in the Autism Disease

About thirty years ago, the interlukin-6 (IL-6) which is the proinflammatory cytokine, was detected as the differentiation factor of B cell. IL-6 is able to induce maturation in B cells and as a result, B cells achieve the ability to produce antibodies. In addition to immune responses, the role of IL-6 has been known in neurogenesis (neurons and glial cells). The studies have showed that the ab...

متن کامل

Lack of exacerbation of neurodegeneration in a double transgenic mouse model of mutant LRRK2 and tau.

LRRK2 (leucine-rich repeat kinase) mutations constitute the most common cause of familial Parkinson's disease (PD). Microtubule-associated protein tau mutations cause a group of neurodegenerative diseases termed tauopathies. Genome-wide association studies show that, after α-synuclein, polymorphisms in the tau gene have the second strongest genetic association with PD. In a proportion of PD pat...

متن کامل

Parkin Deficiency Delays Motor Decline and Disease Manifestation in a Mouse Model of Synucleinopathy

In synucleinopathies, including Parkinson's disease, partially ubiquitylated alpha-synuclein species phosphorylated on serine 129 (P(S129)-alpha-synuclein) accumulate abnormally. Parkin, an ubiquitin-protein ligase that is dysfunctional in autosomal recessive parkinsonism, protects against alpha-synuclein-mediated toxicity in various models.We analyzed the effects of Parkin deficiency in a mous...

متن کامل

LRRK2 as a Potential Genetic Modifier of Synucleinopathies: Interlacing the Two Major Genetic Factors of Parkinson's Disease

Parkinson's disease (PD) and related Lewy body diseases are characterized by deposition of α-synuclein aggregates in both the central nervous system and peripheral nervous system. Synucleinopathy lesions spread to larger brain areas as the disease progresses, and prion-like cell-to-cell transmission of aggregated α-synuclein is thought to be the underlying mechanism for this pathological spread...

متن کامل

No Dopamine Cell Loss or Changes in Cytoskeleton Function in Transgenic Mice Expressing Physiological Levels of Wild Type or G2019S Mutant LRRK2 and in Human Fibroblasts

Mutations within the LRRK2 gene have been identified in Parkinson's disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiologica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012